Eccentric Plug Valve - Series 601

Overview

Flow Control & Isolation Solved

Numerous applications
Eccentric Plug Valves can be used for a wide range of flow control and isolation applications including clean and dirty water, sewage, sludge and slurries, air and other services. Available with EPDM, Nitrile, Neoprene and Fluroelastomer Rubber encapsulated plugs. The Eccentric Plug Valve can be used to isolate and regulate any of these services bi-directionally.

Quality manufacturing
Manufactured in cast iron, using high pressure moulding techniques for consistent quality and precision, the Eccentric Plug Valve also incorporates a nickel weld deposited seat for corrosion and erosion resistance, specially profiled for low torque and extended seat life. At DN65 epoxy seat only.

The Eccentric Plug Valve is trunnion supported and fully encapsulated in an elastomeric polymer. The valve body is fully internally and externally Epoxy coated as standard.

A rubber lined option is also available. Offering a high flow capacity with a round port design in sizes up to DN300 (larger sizes have rectangular ports), the Eccentric Plug Valve design ensures that the ductile iron plug rotates away from the seat as soon as movement begins, avoiding scuffing and thereby enhancing life expectancy.
Eccentric Plug Valve - Series 601

Specifications

Installation
The Millcentric® plug valve is suitable for flow and shut-off in either direction. Seat end downstream is the preferred orientation and any reverse flow requirement should be stated at the time of order. For use on fluids with suspended solids, installation with the seat upstream and the valve stem horizontal is recommended. Plug rotation to the top of the valve will ensure smooth operation.

In-Line Maintenance
In the unlikely event of stem leakage, the stem seals can be easily replaced without removing the bonnet. Access to the body for cleaning or inspection does not require removal from the line.

Modular Construction
Design of the bonnet and stem allows for on-site adaption of gear operators, power actuators, or extension devices on to standard valves. Conversion can be easily undertaken without removing the valve bonnet, thereby minimizing downtime.

Power Operation
Pneumatic, electric or hydraulic operation is available, complete with accessories such as limit switches, solenoid valves and positioners when required.

➤ Valve in closed position for bubble tight shut-off
➤ Normal flow direction gives pressure assisted sealing
➤ Torques are low even in reverse flow
➤ Plug rotates away from the seat for instant opening
➤ Seat wear and operating torque reduced
➤ No further seat contact until valve is closed again
➤ Design of Millcentric plug valve allows modulating control over the full 90° travel
➤ Ideally suited for balancing service
➤ Standard rotary valve provides control and tight shut-off in one valve
➤ Plug is out of flow path when fully open
➤ Straight through, uninterrupted smooth flow
➤ Round port reduces turbulence and erosion, lowers pumping costs and can be “pigged” to clean the pipeline

www.vikingjohnson.com

Viking Johnson Eccentric Plug Valve 3
Eccentric Plug Valve - Series 601

Product Design Benefits

Body

The Eccentric Plug Valve body casting is BS1452 Grade 220 (ASTM A126 Class B) cast iron using high pressure moulding techniques for consistent quality and precision.

Flanges are available drilled to PN16, PN10 or ANSI B16.1 Class 125. Alternative grooved or mechanical joint ends are available.

Seat

On sizes DN80 and above, the Eccentric Plug Valve incorporates, as standard, an 1/8” thick, 99% welded nickel seat for corrosion and erosion resistance, specially profiled for low torque and extended seat life.

On DN65 only corrosion resistant epoxy seat is available for general duties.

Stem seal

High integrity sealing is achieved by combining the advantages of a resilient, abrasion resistant u-cup seal.

From vacuum to high pressure, the self-adjusting sealing system gives positive, trouble-free service and is retained independently of the plug stem or external torque device, eliminating periodic maintenance.

Bearings

The plug rotates in permanently lubricated 316 stainless steel bearings located in the body and bonnet, along with upper and lower PTFE thrust washers which ensure consistently low operating torque.

Position indication

Eccentric Plug Valves equipped with a torque collar have open and closed travel stops and are fitted with an intermediate position indicator.
Bonnet
Superior ‘O’ ring sealing on sizes up to DN800 means lower bolting stresses compared with compression gaskets. Asbestos-free gaskets are used on sizes DN900 and above.

Flow
The round port design (up to and including DN300) with streamlined internal contours gives class leading high capacity straight through flow in the fully open position, reducing turbulence, pressure drop and the effect of erosive media. Flow of sludges and slurries is therefore also enhanced.

Sizes DN350 and above have rectangular ports.

Interchangeable
The face-to-face dimensions on sizes DN300 and below are identical to BS5163 gate valves. Therefore, fitting an Eccentric Plug Valve as a replacement for a gate valve can be accomplished without pipeline modification.

Plug
The ductile iron plug is supported on integral trunnions, and is encapsulated in an elastomeric polymer, providing leaktight shut-off in either direction, even under vacuum conditions.

High integrity sealing is achieved by any of the abrasion resistant elastomers. The PTFE thrust washers prevent entry of abrasive materials into the bearings.

Customer Benefits

- Round port design for full flow - industry leading Kv valves
- Nickel welded seat - for corrosion and erosion resistance
- Epoxy seat - only on DN65 (max temp 50°C)
- Variety of flange connections available - PN10/16 ANSI 125
- Elastomer encapsulated ductile iron plug - material to suit media
- DN65 - DN200 have a 50mm square drive, suitable for a standard waterworks T-key - or dedicated operating lever (supplied separately)
- Epoxy coated inside and out - for improved corrosion resistance
- Optional power operation - for remote operation
- Interchangeable - face to face dimensions are common with gate valves DN80-DN300
- PTFE washers - preventing entry of abrasive materials into bearings (longer life expectancy)
- Stainless steel bearings - permanently lubricated, offering lower torque
Eccentric Plug Valve - Series 601

Elastomer Selection

Elastomers available for Millcentric Valve

Natural rubber is also available.

Nitrile

A general purpose material sometimes referred to as BUNA-N with a –20°C to 100°C temperature range. Used on sewage, water, hydrocarbon and mineral oils.

EPDM

An excellent polymer for use on chilled water through to LP steam applications having a temperature range of –35°C to 90°C. Resistance to many acids, alkalies, detergents, phosphate esters, alcohols and glycols is an added benefit.

Elastomer Selection Chart

<table>
<thead>
<tr>
<th>Service</th>
<th>Elastomer</th>
<th>Average Useful Temp. Range</th>
<th>Service</th>
<th>Elastomer</th>
<th>Average Useful Temp. Range</th>
<th>Service</th>
<th>Elastomer</th>
<th>Average Useful Temp. Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Caustic Soda</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Oil, Animal</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
</tr>
<tr>
<td>Air</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Cement Slurry</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Oil, Gas 600</td>
<td>Fluoroelastomer</td>
<td>–5°C to 145°C</td>
</tr>
<tr>
<td>Air w/Oil</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>Copper Sulphate</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Oil, Gas 603</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
</tr>
<tr>
<td>Alcohol AMYL</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Creosote (Coal)</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>Oil, Lubricating</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
</tr>
<tr>
<td>Alcohol Aromatic</td>
<td>Fluoroelastomer</td>
<td>–5°C to 145°C</td>
<td>Coal Slurry</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>Oil, Vegetable</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
</tr>
<tr>
<td>Alcohol Butyl</td>
<td>Neoprene</td>
<td>–20°C to 100°C</td>
<td>Diesel Fuel No. 3</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>Paint, Latex</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
</tr>
<tr>
<td>Alcohol Denatured</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>Diethylene Glycol</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Phosphate Ester</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
</tr>
<tr>
<td>Alcohol Ethyl</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Ethylene Glycol</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Propane</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
</tr>
<tr>
<td>Alcohol Grain</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>Fatty Acid</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>Rape Seed Oil</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
</tr>
<tr>
<td>Alcohol Isopropyl</td>
<td>Neoprene</td>
<td>–20°C to 100°C</td>
<td>Fuel Oil No. 2</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>Sewage with Oils</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
</tr>
<tr>
<td>Alcohol Methyl</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Fertilizer Liquid H2O2</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Sodium Hydroxide 20%</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
</tr>
<tr>
<td>Ammonia Anhydrous</td>
<td>Neoprene</td>
<td>–20°C to 100°C</td>
<td>Gasoline Keg</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>Starch</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
</tr>
<tr>
<td>Ammonium Nitrate</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Gas Natural</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>Steam to 250°F</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
</tr>
<tr>
<td>Ammonia, water</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Glue, Animal</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>Stoddard, Solvent</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
</tr>
<tr>
<td>Animal Fats</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>Green Liquor</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Sulphuric Acid 10% 50%</td>
<td>Neoprene</td>
<td>–20°C to 100°C</td>
</tr>
<tr>
<td>Black Liquor</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Hydraulic Oil (Petro)</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>Sulphuric Acid 100%</td>
<td>Fluoroelastomer</td>
<td>–5°C to 145°C</td>
</tr>
<tr>
<td>Blast Furnace Gas</td>
<td>Neoprene</td>
<td>–20°C to 100°C</td>
<td>Hydrogen</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>Sulphuric Acid 100%</td>
<td>Fluoroelastomer</td>
<td>–5°C to 145°C</td>
</tr>
<tr>
<td>Butane</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>JF4, JP5</td>
<td>Fluoroelastomer</td>
<td>–5°C to 145°C</td>
<td>Trichloroethylene Dry</td>
<td>Fluoroelastomer</td>
<td>–5°C to 145°C</td>
</tr>
<tr>
<td>Bunker Oil “C”</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>Kerosene</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>Triethylamine</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
</tr>
<tr>
<td>Calcium Chloride</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Ketone</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Vanish</td>
<td>Fluoroelastomer</td>
<td>–5°C to 145°C</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Liquefied Air</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Water, Fresh</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
</tr>
<tr>
<td>Carbon Monoxide (Cold)</td>
<td>Neoprene</td>
<td>–20°C to 100°C</td>
<td>Methane</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td>Water, Salt</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
</tr>
<tr>
<td>Carbon Monoxide (Hot)</td>
<td>Fluoroelastomer</td>
<td>–5°C to 145°C</td>
<td>Methyl Ethyl Ketone</td>
<td>EPDM</td>
<td>–35°C to 90°C</td>
<td>Xylenol</td>
<td>Fluoroelastomer</td>
<td>–5°C to 145°C</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td>Fluoroelastomer</td>
<td>–5°C to 145°C</td>
<td>Naphtha (Benzin)</td>
<td>Nitrile</td>
<td>–20°C to 100°C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Neoprene

This versatile material shows outstanding resistance to abrasion and ozone. Chemical resistance to a wide range of petroleum base products and dilute acids and alkalies. Temperature range –20°C to 100°C.

Fluoroelastomer

Retention of mechanical properties at high temperature is an important feature of this elastomer; temperature range is –5°C to 145°C. It also has excellent resistance to oils, fuels, lubricants and most mineral acids and aromatic hydrocarbons. Note: Not for water or steam applications.
Eccentric Plug Valve - Series 601 DN65 to DN300

Specifications

- Round port design for full flow DN65 - DN300
- Nickel welded seat
- Epoxy seat at DN65 (max temp 50°C)
- Elastomer encapsulated ductile iron plug
- DN65 - DN200 have a 50mm square drive, suitable for a standard waterworks T-key
- Epoxy coated inside and out
- Optional power operation
- Flange drillings: PN10, PN16, ANSI B16.1 Class 125 and Class 250
- Rubber lined option
- Ductile iron option for PN25
- Stainless steel option
- Glass lined option

Eccentric Plug Valve

<table>
<thead>
<tr>
<th>DN</th>
<th>Dimensions</th>
<th>Weight Class 125</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PN16, Class 125</td>
<td>Wrench</td>
</tr>
<tr>
<td>65</td>
<td>60</td>
<td>191</td>
</tr>
<tr>
<td>80</td>
<td>60</td>
<td>203</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
<td>229</td>
</tr>
<tr>
<td>125</td>
<td>60</td>
<td>254</td>
</tr>
<tr>
<td>150</td>
<td>60</td>
<td>267</td>
</tr>
<tr>
<td>200</td>
<td>60</td>
<td>292</td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>330</td>
</tr>
<tr>
<td>300</td>
<td>60</td>
<td>356</td>
</tr>
</tbody>
</table>

* Centre of body to face of handwheel

Materials & Relevant Standards

Torque collar (up to DN200)
Cast Iron, BS 1452 Gr, ASTM 220 A126 CLB, DIN 1691 GG25
U-cup seal
As plug coating
Bonnet
Cast Iron, BS 1452 Gr 220, ASTM A126 CLB, DIN 1691 GG25
‘O’ ring (up to DN700)
As plug coating
Gasket (DN900 and above)
Asbestos-free
Bearing (up to DN500)
Stainless Steel (permanently lubricated)
Bearings (DN600 and above)
Bronze (permanently lubricated)
Thrust water
PTFE
Plug
Ductile Iron, BS 2789 Gr 500/7, ASTM A536, DIN 1693 GGG-40
Plug elastomer
As specified
Body
Cast Iron, BS 1452 Gr 220, ASTM A126 CLB, DIN 1691 GG25
Pressure Rating
PN16 Maximum cwp 16 bar
Hydrostatic Test
Shell: 24 bar
Seat: 17.6 bar
Class 125
Maximum cwp 175 lbf/in2
Hydrostatic Test
Shell: 350 lbf/in2
Seat: 220 lbf/in2
Velocity Limit
Non-abrasive: 10 m/s (30 ft/s)
Abrasive (on/off service): 5 m/s (15 ft/s)
Air: 50 m/s (150ft/s)

www.vikingjohnson.com
Eccentric Plug Valve - Series 601 DN350 and above

Specifications

- Rectangular ports
- Nickel welded seat
- Gear operated
- Optional power actuation
- Elastomer faced ductile iron plug
- Sizes above DN1400, details available on request
- Flange drillings: PN10, PN16, ANSI B16.1 Class 125 and Class 250
- Ductile iron option for PN25
- Stainless steel option
- Rubber lined option
- Glass lined option

Materials & Relevant Standards

Torque collar (up to DN200)
Cast Iron, BS 1452 Gr,
ASTM 220 A126 CLB, DIN 1691 GG25

U-cup seal
As plug coating

Bonnet
Cast Iron, BS 1452 Gr 220,
ASTM A126 CLB, DIN 1691 GG25

'O' ring (up to DN700)
As plug coating

Gasket (DN900 and above)
Asbestos-free

Bearings (up to DN500)
Stainless Steel (permanently lubricated)

Bearings (DN600 and above)
Bronze (permanently lubricated)

Thrust washer
PTFE

Plug
Ductile Iron, BS 2789 Gr 500/7,
ASTM A536, DIN 1693 GGG-40

Plug elastomer
As specified

Body
Cast Iron, BS 1452 Gr 220,
ASTM A126 CLB, DIN 1691 GG25

Pressure Rating
PN16 Maximum cwp 16 bar

Hydrostatic Test
Shelli: 24 bar
Seat: 17.6 bar
Class 125
Maximum cwp 150 lbf/in²

Hydrostatic Test
Shelli: 265 lbf/in²
Seat: 165 lbf/in²

Velocity Limit
Non-abrasive: 10 m/s (30 ft/s)
Abrasive (on/off service): 5 m/s (15 ft/s)
Air: 50 m/s (150 ft/s)

Eccentric Plug Valve

• rectangular ports
• nickel welded seat
• gear operated
• optional power actuation
• elastomer faced ductile iron plug
• sizes above DN1400, details available on request
• flange drillings: PN10, PN16, ANSI B16.1 Class 125 and Class 250
• ductile iron option for PN25
• stainless steel option
• rubber lined option
• glass lined option

Eccentric Plug Valve

<table>
<thead>
<tr>
<th>DN</th>
<th>Dimensions</th>
<th>Weight (Geared) (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PN16, ANSI 125 A (mm)</td>
<td>B (mm)</td>
</tr>
<tr>
<td>350</td>
<td>432</td>
<td>406</td>
</tr>
<tr>
<td>400</td>
<td>451</td>
<td>406</td>
</tr>
<tr>
<td>450</td>
<td>546</td>
<td>432</td>
</tr>
<tr>
<td>500</td>
<td>597</td>
<td>521</td>
</tr>
<tr>
<td>600</td>
<td>1067</td>
<td>584</td>
</tr>
<tr>
<td>700</td>
<td>1295</td>
<td>705</td>
</tr>
<tr>
<td>900</td>
<td>1524</td>
<td>838</td>
</tr>
<tr>
<td>1000</td>
<td>1829</td>
<td>960</td>
</tr>
<tr>
<td>1200</td>
<td>2134</td>
<td>960</td>
</tr>
<tr>
<td>1400</td>
<td>2438</td>
<td>960</td>
</tr>
<tr>
<td>1600</td>
<td>TBA</td>
<td>TBA</td>
</tr>
<tr>
<td>1800</td>
<td>TBA</td>
<td>TBA</td>
</tr>
</tbody>
</table>

Every effort has been made to ensure that the information contained in this publication is accurate at the time of publishing. Crane Ltd assumes no responsibility or liability for typographical errors or omissions or for any misinterpretation of the information within the publication and reserves the right to change without notice.
Eccentric Plug Valve - Series 601 Rubber lined DN80 to DN350

Specifications

- Natural rubber body lining
- Natural rubber encapsulated ductile iron plug
- DN80 - DN200 have a 50mm square drive, suitable for a standard waterworks T-key
- Gear operation optionally available
- Optional power operation
- Flange drillings: PN10, PN16, ANSI B16.1 Class 125
- DN400 – DN1000 details on request

Eccentric Plug Valve

<table>
<thead>
<tr>
<th>DN</th>
<th>PN16, Class 125 A* (mm)</th>
<th>Wrench B (mm)</th>
<th>Geared B (mm)</th>
<th>PN16, Class 125 D (mm)</th>
<th>N (mm)</th>
<th>O (mm)</th>
<th>T** (mm)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>203</td>
<td>199</td>
<td>-</td>
<td>191</td>
<td>67</td>
<td>241</td>
<td>18</td>
<td>34</td>
</tr>
<tr>
<td>100</td>
<td>229</td>
<td>184</td>
<td>162</td>
<td>229</td>
<td>152</td>
<td>67</td>
<td>241</td>
<td>30</td>
</tr>
<tr>
<td>125</td>
<td>254</td>
<td>213</td>
<td>194</td>
<td>254</td>
<td>305</td>
<td>67</td>
<td>241</td>
<td>37</td>
</tr>
<tr>
<td>150</td>
<td>267</td>
<td>213</td>
<td>194</td>
<td>279</td>
<td>305</td>
<td>67</td>
<td>241</td>
<td>43</td>
</tr>
<tr>
<td>200</td>
<td>292</td>
<td>273</td>
<td>241</td>
<td>343</td>
<td>305</td>
<td>67</td>
<td>286</td>
<td>86</td>
</tr>
<tr>
<td>250</td>
<td>300</td>
<td>289</td>
<td>-</td>
<td>406</td>
<td>305</td>
<td>118</td>
<td>295</td>
<td>152</td>
</tr>
<tr>
<td>300</td>
<td>396</td>
<td>330</td>
<td>-</td>
<td>483</td>
<td>305</td>
<td>118</td>
<td>295</td>
<td>196</td>
</tr>
<tr>
<td>350</td>
<td>432</td>
<td>330</td>
<td>-</td>
<td>533</td>
<td>305</td>
<td>118</td>
<td>295</td>
<td>240</td>
</tr>
</tbody>
</table>

* Excludes thickness of rubber on face of flanges
** Centre of body to face of handwheel

Materials & Relevant Standards

Torque collar (up to DN200)
Cast Iron, BS 1452 Gr, ASTM 220 A126 CLB, DIN 1691 GG25
U-cup seal
As plug coating
Bonnet
Cast Iron, BS 1452 Gr 220, ASTM A126 CLB, DIN 1691 GG25
‘O’ ring (up to DN700)
As plug coating
Gasket (DN900 and above)
Asbestos-free

Bearings (up to DN500)
Stainless Steel (permanently lubricated)
Bearings (DN600 and above)
Bronze (permanently lubricated)
Thrust water
PTFE
Plug
Ductile Iron, BS 2789 Gr 500/7, ASTM A536, DIN 1693 GGG-40
Plug elastomer
As specified

Body
Cast Iron, BS 1452 Gr 220, ASTM A126 CLB, DIN 1691 GG25
Pressure Rating PN16
Maximum cwp 16 bar
Hydrostatic Test
Shell: 24 bar
Seat: 17.6 bar
Velocity Limit
Abrasive (on/off service): 5m/s (15ft/s)

Every effort has been made to ensure that the information contained in this publication is accurate at the time of publishing. Crane Ltd assumes no responsibility or liability for typographical errors or omissions or for any misinterpretation of the information within the publication and reserves the right to change without notice.

www.vikingjohnson.com

Viking Johnson Eccentric Plug Valve 9

Flow Control
Project
The Grizedale Reservoir in Lancashire, has a tunnel (1.8 x 1.7m) beneath the dam which transports water from the reservoir. The 450mm bore Viking Johnson eccentric plug valve provides United Utilities with the ability to not only isolate but control the flow accurately when transferring water.

Client
United Utilities

Contractors
Designed and manufactured under quality management systems in accordance with BS EN ISO 9001.

Environmental Management System accredited to ISO 14001.

For full terms and conditions, please visit our website.